
Technical Report No. 32-546

A Set of Algorithms for a
Diagnosable Arithmetic Unit

i Algirdas A vizienis
~

e& s 3 s-7r;
-i-R -

h m
@ l L - m- . 32-546) 075: q 3 L p & , 9/*2L

i

A Set of Algorithms for a
Diagnosable Arithmetic Unit . f .

i
Atgirdas A vizienis

Henry A. Curtis, Chief
Flight Computers and Sequencers Section

J E T PROP- L A B , Y
CALIF,- INST-OF T ~ c y n a t a ~ l -

<PA s A DE N A , c A L I FO RN I A
*

1964

Copyright 0 1964
Jet Propulsion Laboratory

California Institute of Technology

Prepared Under Contract No. NAS 7-100
Nationol Aeronautics 8 Space Administration

JPL TECHNICAL REPORT NO . 32-546

CONTENTS

1 . Computational Errors in Digital Arithmetic 1
A.Introduction . 1
B . ComputationalErrors 1
C . PropertiesofAxithmeticalErrors 2
D . Errors in Binary Arithmetic 3
E . TheEffectsof aCircuitFailureinBinary Arithmetic 4
F . The Effects of a Repetitive Use of One Defective Circuit and of

Multiple Failures 5

II . Hardware Methods for the Detection of Arithmetical Errors . . . 6
A . Introduction . 6
B . Methods of Numerical Checking 6
C . Independent Adder and Checker System 7
D . tirithmeticai Encoding of Digitai "umbers 8
E . Merit Criteria for the Check Moduli 9

111 . Minimal Cost Checking Algorithm for the Detection of
Arithmetial Err- 10
A . Introduction . 10
B . Alternate Choices for Arithmetical Checking 10

10
D . The Minimal Cost Checker 11
E . The Effectiveness of a Check Modulus 12
F . Detection of Error Magnitudes of Weight 2 12
G . The Detection of Erasures with a = 2"-1 14
H . Detectability of Controlled (Nonadjacent) Erasures 15

C . The Cost of Checking Algorithms

IV . Arithmetical Algorithms for Product-Coded Binary Numbers . . 16
A . Introduction . 16
B . The SUM and DIFFERENCE Algorithms 16
C . The Arithmetic SHIFT Algorithms 17
D . The (2"-1) ZAlgorithm 18
E . The W/(2"-1) Algorithm 19
F . TheROUNDOFFAlgorithm u)
G . ThePRODUCTAlgorithm 20
H . The QUOTIENT Algorithm 21

References . 22

Appendix . 23

I
I JPL TECHNICAL REPORT NO . 32-546
I

TABLES

A - l . a = 2 , a = 3 . . 23

A-2.a=3,a=7. . 23

A.3 . a = 4. a = 15 . 24

A4.a=SIa=31 . 24

A.5 . a = 6. a = 63 . 24

A-6.a=7,a=127. 25

A.7 . a = 8. a = 255 . 25
A-0.a=9,a=511. 25

A.9 . a = lola= 1023 25
A.10 . a = 11. a=2047 * . . . M I oc

A.11 . a = 12. a=4095 26

.

14.12 . Distance 3 codes 27

A.13 . Distance 4 codes 27

A.14 . Prime factors of 2"-1 28

FIGURES

1 . Adder with independent checker 7

2 . Adder for encoded operands 8

3 . Checking methods for digital arithmetic 11

5 . Serial circuit for the (2a-1)Z algorithm with m = ka-1
6 . Serial circuit for the W / (T - 1) algorithm with m = ka-1

4 . Minimum cost checker for a = 2"- 1 11
19

. 19

V

JPL TECHNICAL REPORT NO. 32-546

ABSTRACT

The design of a diagnosable arithmetic unit for a digital computer
is discussed in this Report. Arithmetical errors are classified, and the
effects of a circuit failure on an arithmetical result are considered. The
methods of hardware (wired-in) checking of arithmetic are reviewed,
and the cost of checking is proposed as a merit criterion. A low-cost
checking algorithm for product-coded numbers is presented, and its
effectiveness is evaluated with respect to various types of errors. A
complete set of arithmetical algorithms for product-coded numbers
is also presented. The algorithms are especially economical when the
product code is chosen for the proposed low-cost checking algorithm. -

1. COMPUTATIONAL ERRORS IN DIGITAL ARITHMETIC

A. lntroduction
Functionally, the arithmetic unit of a digital computer

may be described as a "black box" which receives two
types of inputs:

1. The operation code (OC), which uniquely specifies
one algorithm from the several other arithmetic al-
gorithms available in the given computer.

2. One operand (X) or a pair of operands (X, Y), which
are digital numbers taken from a finite set of repre-
sentable digital numbers of the given computer.

Corresponding to every input pair (OC, X) or input
triplet (OC, X, Y), the black box produces, after a time
interval t(OC), one of two types of outputs:

1. One result (S) or a pair of results (S, T) which are
members of the representable set of digital numbers.

2. A special signal (SI) from a set of special signals
indicating singularities. A singularity is a result
which is not contained in the set of representable
digital numbers. The associated pseudo-result may
also be specified for any SI.

The set of operation codes {OC} and the set of repre-
sentable digital numbers {X} to be used depends on the

class of problems to which the computer is applied. The
logic design of the black box arithmetic unit depends on
the required operation speeds and the allowable hard-
ware cost in terms of logic and storage circuits. The logic
for arithmetic control has been included in the arithmetic
unit by the above definitions. The least time (a fixed At)
and the most hardware will be required if arithmetic is
performed as table look-up of results (S, T) for every
possible set of inputs (OC, X, Y). Hardware requirements
are reduced and operation times increased when the re-
sults (S, T) are generated by means of arithmetical algo-
rithms. These algorithms are exact rules for computing
the results by means of a sequence of gating operations
between storage circuits through combinational logic
circuitry. Repeated use of the same circuits reduces
hardware requirements but increases t(OC) and the com-
plexity of control sequences for the algorithms.

.

B. Computational €rrors

Regardless of its internal logic design, every arithmetic
unit is intended to be an entirely deterministic black box,
with only one result corresponding to each set of inputs.
However, a failure or a temporary malfunction of a cir-
cuit in the arithmetic unit may cause a different result

1

JPL TECHNICAL REPORT NO. 32-546

(S *) to be generated instead of the specified result (S) .
There are two broad categories of this event

1. The wrong operation is executed (OC’ instead of

2. The wrong result is generated (S’ instead of S) be-

OC) because of a control error.

cause of an arithmetical error.

The detection of both types of computational errors is
a significant problem in present-day digital computers.
The more common of two possible detection approaches
is to incorporate checking into the programs of the com-
puter. The first approach, programmed “software checks,”
is the responsibility of the programmer and does not af-
fect the logic design of the arithmetic unit. The second
approach, “hardware checking,” has additional hardware
introduced into the computer, and the result of each
arithmetical algorithm is automatically (without pro-
grammed commands) tested for acceptability. Hardware
checking relieves the programmer of the chore of pro-
gramming checks; consequently, it may be expected to
achieve the acceptance found by hardware implementa-
tions of floating-point arithmetic and by the more recent
hardware algorithms for significant digit arithmetic, both
of which are replacing programmed implementations.
The general acceptance of hardware checking depends
on the development of relatively economical and fast
algorithms for the checking operations. The self-evident
method of duplicating the arithmetic unit offers a refer-
ence point for a search for more economical approaches.

C. Properties of Arithmetical Errors
To limit the scope of this investigation, attention will

be restricted to arithmetical errors, leaving control errors
as a separate problem of checking control operations
throughout the computer. A study of arithmetical errors
requires, first of all, a complete enumeration and classi-
fication of these errors.

Given a computer which employs conventional con-
stant base b digital numbers n digits long, an arithmetical
error occurs if the correct (i.e., specified) result corre-
sponding to (OC, X, Y) is the digital number S composed
of n digits si: s , - ~ . . . si . . . so, and the actual result is the
digital number S’ such that

si #s; (O < i < n - 1)

holds for one or more positions i of S and S ” .

Corresponding to every possible arithmetical error an
error number E , is defined as composed of n digits:
en-l . . . e, . . . e,,, such that

The error number E is a redundant form, since its digits
may assume any one of 2b-1 values

- (b-l) , . . . , - l , O , l , . . . ,(b-1)

when both si and s. range from 0 to b - 1.

An arithmetical error corresponds to an undesired ad-
dition of the error number E (defined in terms of its
digits ei) to the correct result S such that the actual result

S * = S + E (2)

is generated, or delivered from storage, by the arithmetic
unit.

The most significant properties of arithmetical errors
are their detectability and their probability of occurrence.
These properties will be investigated by a study of error
numbers E which assume the integer values

(3)

Since there are 2b-1 possible values for each
ei (0 < i 5 n-l), there exists a total of

N = (2b-1)” - 1 (4)

different forms of error numbers E (excluding the case
E = 0). The N different forms are divided into N/2 sym-
metrical pairs of forms. In each pair one form has the
value + IEI, and the other form has the value - IEI.
One member of the pair is obtained from the other by
changing the signs of all nonzero digit values (ei # 0).

The range of the values of E does not exceed the range
which is representable by the digits si of S , so that

(bn - 1) 2 IEI 2 1 (5)

is the range for the magnitudes of E . There is at least one
pair of forms corresponding to every possible magnitude
IEI. Consequently, all (2b-1)” - 1 possible forms of
error numbers E are classified into b” - 1 magnitude
classes according to the value of I E I, and every arithmet-

2

JPL TECHNICAL REPORT NO. 32-546

ical error is said to have the magnitude I E I, which is the
magnitude of the associated error number E, computed as

In all known methods of numerical checking for digital
arithmetic, the detectability of an arithmetical error de-
pends on its magnitude. Because of the redundancy of
the error numbers E, most magnitude classes will contain
more than one pair of different forms. These pairs of
forms will differ in the values, the locations and the total
number of nonzero digits, e i .

The second important property of an error number E
is its multiplicity p, which is defined as the count of non-

magnitude class there will exist one or more pairs of
forms which have the least value of p among all members
of that magnitude class. This value is the minimal multi-
plicity or weight of the given error magnitude IEI. The
weight indicates the least number of independent
changes (not dependent on carry propagation) in the
digits of the operands or the results which are necessary
to cause an error of magnitude [E l during an addition.
Because of carry propagation, the error number E may
assume a form which is not of minimal multiplicity.

ZPT<? digit x.7 2!zes (e; $. 0) ix :: given h i m Gf E. In e V & q

In summary, every symmetrical pair of error numbers
has an associated error magnitude I E I and an error mul-
tiplicity p. Every magnitude class IEI (containing one or
more of these pairs) has a minimal multiplicity, called
its weight, w(lE1). The value of an error magnitude in-
dicates its detectability, while the weight of an error
magnitude may indicate the relative probability of its
occurrence. Further consideration of this probability is
necessary because repetitive use of a single defective
circuit generally will not yield an error of weight 1.

D. Errors in Binary Arithmetic
The preceding definitions and properties of arithmeti-

cal errors apply equally well to any conventional number
system with a constant positive base b 2 2 and may be
readily extended to other positional number systems. For
a more detailed investigation attention will be focused
on base 2, the case of most immediate interest.

For binary numbers of n-digits-length, the value of the
error number is

The error number contains ei = + 1 for every position i
in which the correct digit si = 0 was replaced by the
incorrect digit si = 1, and ei = -1 for a change from
si = 1 to si = 0. There exists a total of 3" - 1 distinct
forms of E, which are divided into 2" - 1 magnitude
classes, since 2" - 1 2 IEI 2 1 is the range of n-digit
binary numbers.

For any given error magnitude I E I = K it is necessary
to establish the weight (minimal multiplicity) w(K). The
definition of the multiplicity p for a binary error number
E with digits ei is

1 -"

Among all tpahs of forms {& E K ~ . . . , + E K j . . . , zk E K ~)
which belong to the magnitude class K there is a minimal
form f E,, for which

The existence and generation of such minimal forms
has been investigated for the recoding of multipliers in
accelerated multiplication (Ref. 1). Using these results,
the weights w(K) may be computed for alI 2" - 1 error
magnitudes. According to the theory of multiplier recod-
ing, a binary number E possesses the "unqualified prop-
erty M" if and only if

ei = 0, for 1 5 i _< n-1 (10)

which means that no two adjacent digits of E are both
nonzero. After imposing the further restriction that

(i.e., the two leftmost digits of E are not both +l or both
-l), Reitwiesner (Ref. 1) shows that

1. For any error magnitude K there exists among its
forms a pair of unique forms & EKM which possess
the unqualified property M;

2. No other form in the magnitude class K has a lower
multiplicity than the multiplicity p(EKy) of k

3

JPL TECHNICAL REPORT NO. 32-546

The restriction e,-1 en-* # +I can be imposed in the
study of multiplier recoding because of the limited range
of multipliers. This restriction does not apply to binary
error numbers E, for which e,_l e,-* = + 1 is also pos-
sible; therefore, minimality must be defined for this case.

The error number E possesses the “restricted property

1. ei ei-l = +1 holds pairwise for n-1 2 i 2 k; that
is, the digits en-l, e,-,, . . . ek all have the same value,
+1 or -1;

2. ei ei-% = 0 holds for k 2 i 2 0; this means that the

ek, ek-l, . . . , e,, possesses the unqualified property
M . Since = + 1 or - 1, ek-l = 0 will always hold.

M” if and only if

I digital number composed of the rightmost digits

The existence and minimality proofs of the unqualified
property M extend readily to the restricted property M.

The minimal forms 2 E K M , corresponding to any error
magnitude K, are defined to be the unique pair of forms
which possess the (unqualified or restricted) property M
among all forms in the magnitude class K. The multi-
plicity p(+ EK,) of this pair is defined as the weight
w(K) of the error magnitude K.

Given any one form t E K j from the set of forms cor-
responding to error magnitude K, the minimal form
+ E K M is generated according to the recoding rules given
by Ref. 1. All other dorms of magnitude K may be gener-
ated from the minimal form + EKM by reversing the re-
coding procedure. The definitions and rules given in this
section provide practical methods for the determination
of the weights w(K) and for the enumeration of all forms
belonging to any magnitude class K.

E. The Effects d a Circuit Failure in
Binary Arithmetic

Arithmetical errors occur when a defective component
is employed in generating the result of a specified algo-
rithm. The external effect of a defective component is
observed as the failure of a logical circuit to perform its
prescribed function. The two principal modes of failure
of logical circuits are termed “stuck on 0 and “stuck
on 1”. These terms apply to four different locations:

1. an input to a binary storage circuit;

2. an input to a combinational logic circuit (gate);

3. an output of a binary storage circuit;

4. an output of a combinational logic circuit (gate).

If the defective circuit is employed only once in a
particular algorithm, the effect of the failure is the re-
placement of a single binary variable (0 or 1) by its com-
plement (1 or 0, respectively). Physically, the replacement
may occur in the input operands, at an input or output
of combinational logic, or in the result itself. The effect
of the failure will be further localized if the design of
the arithmetic unit is such that one use of a failed circuit
can affect only one binary digit. This requires, for in-
stance, that in a binary adder the circuits which generate
the sum digit should be independent of the circuits which
generate and transmit carries.

When the above given conditions are satisfied, an error
number E j will be added to the correct result by a single
use of a failed circuit which affects the j-th digit of the
n-digit result. The actual result will be

S‘ (S + E i) modulo A (12)

in an arithmetic unit which employs a modulo-A adder
or subtractor. The four possible nonzero values of Ej in
this case will be (with n-1 2 i 2 0):

Ei 2i

Ej = -A + 2j

Ei = -2i

The first two values occur when a unit is added in posi-
tion i during the execution of the algorithm. (The second
case includes a subtraction of A due to the error.) The
last two values occur when a unit is subtracted in posi-
tion i. (The fourth case includes a failure to subtract A
due to the error.) A fifth case

Ej = 0

will occur when the error condition is the same as the
desired value. In this case the failure will have no ob-
servable effect and will not change the correct result. It
is evident that the nonzero errors Ej will belong to two
magnitude classes, which are

l E j l = 2j

with i in the range n-1 2 i 2 0 for n-digit numbers.

4

I JPL TECHNICAL REPORT NO. 32-546

In a completely parallel operation, such as parallel
transmission, digitwise complementation of a register, or
a single shift, the actual error number will contain only
a single digit of value + 1 or -1. This condition will
also hold in parallel addition of two digital numbers if
the error is caused by the circuits which form or store
the sum digits. If the error of magnitude zk 2i is intro-
duced in the input operands, or if it is caused by the
carry-generation or carry-propagation logic, the corre-
sponding error number may contain a string of $1 digits,
beginning at the position i and terminating at some posi-
tion i + k with a ,1 digit. For instance, a five-bit error
number with the value E = +1 may assume the follow-
ing five forms: oooO1, Oooli, Oolii, Oliii and lllli,
after an addition, while only the first form will OCCUT

after a completely parallel operation. When - - - _ - the addition
is performed modulo 2’ = 32, the form 11111 (value
-31) may also occur, - - - - while for addition modulo 2’ - 1
= 31, the form 11110 (value -30) caused by the “end

relationships are: + 1 = -31 modulo 32, and + 1 E -30
modulo 31.

----.--1” aluuiiu ciiiij- caii be h i i d . F‘ai the h t ti^^ C - Z S ~ S the

F. The Effects of a Repetitive Use of One
Defective Circuit and of Multiple failures

In many cases of practical interest the circuits of the
arithmetic unit are used more than once during a given
algorithm. Serial shifting of several positions and serial
addition serve as examples of such repetitive use, as well
as multiplication and division in any arithmetic unit.
Evidently, a single defective component, when used
repetitively during an algorithm, will generate an error
number whose magnitude in most cases differs from 2i.
If errors of magnitude 23 (weight 1) are called single
errors, then a single defective circuit may generate other
than single errors.

Since the practical objective of error detection and/or
correction is the protection against, at least, single fail-
ures of circuitry, it is necessary to investigate the error
numbers generated by repetitive use of a defective cir-
cuit during one algorithm. A thorough knowledge of their
properties, in turn, may indicate which variations of the
arithmetical algorithms ~ i l l yield the highest probability
of single-failure detection.

A more detailed definition of circuit failure is necessary
in the case of repetitive use of defective circuits. For
single use it is sufficient to state that an inversion of a
binary signal occurs (0 instead of 1, or 1 instead of 0 is
generated). For repetitive use, however, both the dura-

tion and the mode of failure must be considered. A
failure has occurred if the mode of failure persists for the
entire duration of the algorithm (i.e., for all uses of the
circuit); if the mode of failure does not last for all uses
of the circuit, a malfunction has occurred.

The two modes of failure considered here are “stuck
on 0 and “stuck on 1”. The damage which is inflicted on
a result by repeated use of the defective logic circuit is
called an erasure. An erasure is described as follows:
given a set of positions { j } in a binary number, which
are occupied by binary digits of value 0 or 1, a down-
erasure occurs when all these digits are replaced by O’s,
and an uperasure occurs when they are replaced by l’s.
An erasure is specified completely by the list of posi-
tions and by the direction (up or down). In the case of
a failure, the positions of an erasure depend on the de-
tails of the algorithm. Unless special precautions are
taken, these positions may be a continuous string over a

a malfunction, the positions of an erasure also depend
on the duration and timing of the malfunction. Only a
part of the previous set of positions (affected by a fail-
ure) will be affected by a malfunction.

piiit of the i e d t oi Gvci the 2iitii-e i e d t . Iii the CSZ of

An error number of value Ej corresponds to every
position of an erasure. An erasure number has the value

E’ = C Ej modulo A

where all error numbers Ej for the given set { j } of
erasure positions are included in the sum. For the mode
“stuck on l”, the values of Ej may be 2j, -A+2j, and
zero. Then

For the mode “stuck on O”, the values of Ej may De
-2j, A - 2j, and zero. In this case

These values form the set of potential values of an
erasure number. I t is necessary to observe that in the
definition of an erasure every erasure position i can be
affected only once by the failed circuit. If this restriction
is not satisfied, one failure may add two or more erasure
numbers to the result.

5

JPL TECHNICAL REPORT NO. 32-546

A third mode of failure, which has not been considered
before, is “stuck on X . In this case the value X is inde-
terminate in terms of 0 and 1 and may be interpreted
randomly as either 0 or 1 by the following logic cir-
cuits. In this case the value of the erasure number

E‘ = E j modulo A

may have any one of the five values k 2j, k (A-2’) and

zero for every Ej in the sum, and the set of potential
values is further expanded.

I t should be observed here that an erasure due to the
failure mode “stuck on X has the same effect as several
independent failures during an algorithm in which every
failed circuit is used only once. The values of the error
number (or erasure number) due to a failure of two or
more logic circuits are obtained by summing the error
(or erasure) numbers due to every separate failure. The
probability of any particular error magnitude can then
be estimated by using combinational mathematics.

II. HARDWARE METHODS FOR THE DETECTION OF ARITHMETICAL ERRORS

A. Introduction
Failure of a single component in an arithmetic unit

may produce an incorrect result which invalidates the
entire programming effort and wastes computing time.
Arithmetical errors may be detected either by means of
programmed check. or by means of hardware checks
(additional hardware associated with the arithmetic unit).
Hardware checking relieves the programmer of the non-
productive effort of programming checking operations.
Furthermore, hardware checking is applied to the result
of every arithmetical algorithm which corresponds to a
single instruction. A component failure or temporary mal-
function is detected immediately after its occurrence, and
corrective action may be initiated with a minimal loss
of time, employing a program-independent interrupt
sequence.

Two types of corrective action may be initiated after
an arithmetical error has been detected. One type is auto-
matic error correction, which is often implemented in the
transmission of information by means of error-correcting
codes and special hardware for error correction. The
other type is a replacement sequence or a repair action
which is initiated upon the detection of an arithmetical
error. Automatic error correction is necessary for table-
lookup type arithmetic units in which all results are
stored permanently, and data transmission from storage
is the only operation. Error-correcting codes, which have
been devised for data transmission, are applicable in this
case.

When computation in the arithmetic unit is by means
of algorithms, automatic error correction implies a sec-
ond arithmetic unit which computes corrections for the
incorrect results of the first. Furthermore, the error-
correcting codes used in transmission of information do
not retain their properties when subjected to arithmetical
algorithms; and, consequently, new codes must be de-
vised. The replacement or repair of a defective arith-
metic unit is, therefore, the more practical solution for
algorithm-type arithmetic units. The entire attention in
this case may be focused on codes and methods of de-
tecting arithmetical errors.

6. Methods of Numerical Checking
In algorithm-type arithmetic units the elementary algo-

rithms are those used for transmission, digitwise comple-
mentation, addition (and/or subtraction), and shifting of
digital numbers. Compound algorithms are executed as
sequences of these elementary algorithms. Consequently,
checking of the elementary algorithms is a prerequisite
for any error detection scheme. The checking of data
transmissions also provides a method for checking the
validity of input operands, which are transmitted from
other parts of the computer.

We have observed that an arithmetical error may be
described as the addition of the error number E to the
correct result S, such that the actual result S” = S + E
is generated. In conventional number systems every out-

6

JPL TECHNICAL REPORT NO. 32-546

put result is a valid digital number, and, consequently, S
and S’ cannot be distinguished for any value of E. Evi-
dently, additional information must be introduced into
the number system which will permit us to distinguish S
and S‘ for at least some (most likely) values of E.

Two methods have been proposed for checking addi-

1. The attachment of cheek symbols to all digital num-

2. The arithmetical encoding of all digital numbers in

tion and other elementary algorithms:

bers in the computer.

the computer.

The objective of both methods is to provide the means to
distinguish S and S’ = S + E for a chosen set of error
magnitudes {I E I}. Both methods depend on the additive
character of the arithmetical errors and differ principally
in the implementation of the checking algorithm.

Since the effects of all elementary algorithms may be
described in terms of an addition, checking the SUM
algorithm is the principal problem. For example, the
other base 2 algorithm are included by considering the
transmission of X as the addition X + 0, the left shift of
X as the addition X + X, the complementation with re-
spect to A as the addition A+(-x), and the right shift
of X as the addition X+(-X/2). Multiplication and
division are composed of sequences of the elementary
algorithms.

C. Independent Adder and Checker System
The first important step in devising checking proce-

dures for an arithmetic unit is the choice of a checking
procedure for the SUM algorithm, that is, for the output
of an adder, several of which have been suggested or
investigated in current technical literature.

One method of checking an adder employs an inde-
pendent checker. The adder and the checker are two
completely independent circuits. Each digital number X
of a given system has a check symbol c(X), which is
stored as a pair [X, c(X)] with the number. When two
numbers (X,Y) are sent to the adder to form the sum
X + Y their check symbols are sent to the checker, which
forms the output c(X)*c(Y). This checker output must be
the check symbol for the sum; that is, the following re-
quirement is to be satisfied

c(X+Y) = c(X)*c(Y) (13)

An acceptance check must be performed to test whether
Eq. (13) is satisfied. This check consists of computing
c(X+Y) from the adder output X+Y and comparing it
with the checker output c(X)*c(Y). If Eq. (13) is not
satisfied, a computational error has occurred either in
the adder or in the checker circuits. If Eq. (13) is satis-
fied, the addition is accepted as valid, although an unde-
tectable error may have occurred. A block diagram of the
checking system is shown in Fig. 1.

I

c (X + Y) L
Fig. 1. Adder with independent checker

The independent checker system has been studied by
W. W. Peterson (Ref. 2 and 3). In these references he
discusses independent checkers and proves a basic the-
orem on such systems.

Peterson’s Theorem: If there are fewer check symbols
than integers in the allowed range of the digital
numbers, and if the check symbols satisfy Eq. (13),
then c(X) must be the residue of X modulo some
integer /3 in coded form, where /3 is the number of
distinct check symbols; and the operation * is addi-
tion modulo 8.

Evidently, if there are as many check symbols as integers,
each integer has a separate check symbol, and the
checker is a duplicate adder.

The independent checker system has also been studied
by H. Gamer (Ref. 4), who discusses application of the
check moduli (b + 1) and (b - 1) for base b number sys-
tems. An early design [1948-19501 of a digital computer
employing this type of checking is described in Ref. 5
and 6. The RAYDAC computer, which had an inde-
pendent checking arithmetic unit (discussed in Ref. 5
and 6) was recently decommissioned after almost a dec-
ade of satisfactory operation.

Generally, an independent checker system is limited
to the detection of errors, since there is no indication

I
I

7 I

JPL TECHNICAL REPORT NO. 32-546

whether the failure occurred in the adder or in the
checker. The undetectable errors correspond to all error
words E such that

IEI = kp 0 mod p (14)

that is, the magnitude of E is an integral multiple k of
the check modulus p. (k and p are positive integers.) A
less probable undetectable error occurs when both the
adder and the checker fail simultaneously and indicate
acceptance, or when the comparator fails.

Since the operation of the checker is addition modulo
p, a residue number system of range 0 5 c (X) < /3 may
be conveniently chosen as the set of check symbols. A
limited range residue arithmetic unit then serves as the
“checking arithmetic unit”.

D. Arithmetical Encoding of Digital Numbers
Another method for checking the SUM algorithm is the

premultiplication of all digital numbers X in the allowed
range by an integer constant a, so that all numbers 2 en-
tering the adder are encoded in product form (2 = a X) .
Because of the distributive law of algebra,

a x + a Y = a (X + Y) (15)

that is, the output of the adder should be a digital num-
ber in properly coded form. To test the output for valid-
ity, divide it by a and inspect the remainder. A nonzero
remainder (the least positive residue of the adder output,
modulo a) indicates that an arithmetical error has oc-
curred and that the adder output is actually

S* = a (X + Y) + E (16)

where the error number E satisfies

I E I # k a for k, a positive integers. (17)

All errors corresponding to error numbers E, such that
I E I = ka, will remain undetected by this checking pro-
cedure. It is evident that both the quantity and the mul-
tiplicity of undetectable error numbers depend on the
choice of a.

Considering the possible values of a, it is observed that
if a has the base b of X as a factor (a = kb), then the
right end digit of a X is always zero and, therefore, use-
less. All allowed values of this right end digit will occur
only if a and b are relatively prime, and this requirement
should be satisfied for efficient utilization of storage.

To detect any weight-1 error (only one digit ei # 0 in
the error number E) the requirement

should be satisfied by a for any positive integer k and for
I ei I < b. Equation (18) will be satisfied by any a > b,
which is also relatively prime to b. The smallest value of
a which satisfies these requirements is

a = b + l (19)

This value requires not more than two extra digits to
encode X into ax.

The detection of errors of higher multiplicity and, also,
the correction of errors has been investigated for base
b = 2 in the following references. The earliest descrip-
tion of product encoding for error detection is attributed
to J. M. Diamond (Ref. 7). Later D. T. Brown (Ref. 8)
described a class of double-error detecting and single-
error correcting binary codes. This work was further
systematized and some codes for triple-error correction
were described by W. W. Peterson (Ref. 2).

Considering the product encoding method more gen-
erally, an arithmetical transformation is applied to each
digital number X to get the coded form + (X) . The adder
forms the sum 2 = + (X) + +(Y) which should satisfy the
requirement

The acceptance test is made by testing whether the adder
output 2 is a member of the coded set of numbers; this
may be considered as the application of a reverse trans-
formation +-l to 2. In the previous method + was multi-
plication by a, and +-l was division by a. A block diagram
of the general coding method is shown in Fig. 2. An error
indication occurs if adder output 2 is not a properly
coded number.

Beside product encoding (premultiplication) discussed
above, a sum encoding has been suggested, in which a

ADDERDUTPUT
ERROR INDICATION

b
(ZI

Fig. 2. Adder for encoded operands

8

JPL TECHNICAL REPORT NO. 32-546

k-digits-long check number #(X) with /3 distinct values
is computed and added to the n-digits-long operand X,
such that either

#(X) bn + X 5 0 modulo /3 (21)

is satisfied by the composite number with #(X) attached
at the left end of X, or

X bk + #(X) = 0 modulo /3 (22)

is satisfied by the composite number with #(X) attached
at the right end of X.

Both schemes have been only sketchily suggested, Eq.
(21) in Ref. 9 and Eq. (22) in Ref. 2, page 244. The prob-
lems of cq-transmission between X and #(XI during
addition, and especially those in multiplication and divi-
sion have not been solved for such sum encoding.

E. Merit Criteria for the Check Moduli
In both methods of checking (separate check symbols

and product encoding) the undetectable errors corre-
spond to all error numbers E whose magnitudes satisfy
the equation

where the check modulus a and the coefficient k are both
positive integers. The remaining problem is to select a
value of a which is best suited for checking a given arith-
metic unit.

The currently existing criterion for the choice of a is
the elimination of all errors with low values of the weight
(minimal multiplicity) of corresponding error numbers
(Ref. 2 and 8) . Values of a have been determined which
yield codes of specified distances d = 2 , d = 3 and d=4
for binary numbers X in the range 0 5 X < M, (a, d) .
A code of distance d detects all errors of weight d - 1 and
less when the range of the (uncoded) numbers given
above is not exceeded by the results of the addition. The
value of M , (a, d) is a function of a and the specified
distance d .

It is proposed here that a second criterion, namely the
cost corresponding to the given choice of a, should be
considered in the choice of a. It is argued that by per-
mitting a small percentage of previously detectable (say,

double) errors to remain undetected, the cost and the
probability of failure of the checking algorithm may be
decreased by a significant amount. Instead of “specified
detection at any cost” the more practical approach ”effec-
tive detection at low cost” is proposed.

The cost incurred by introducing emrdetecting algo-

1. the cost of the special checking hardware;

2. the increase in the length of digital numbers, re-

3. the increase in the duration of the algorithms in the

4. the increase in the complexity of the original arith-

rithms into an arithmetic unit is distributed as follows:

quiring additional storage capacity;

arithmetic unit

metic unit and arithmetic control.

It may be expected that the cost will vary for various
choices oi a. From the viewpoint oi cost, choices of Q

which give the least increase in cost [expressed as some
cost function C(a)] are most desirable.

The original distance criterion may be more generally
stated in terms of the probability P(a) that an erroneous
result will remain undetected for a given value of a and
for a given set of arithmetical algorithms with their hard-
ware implementation. In the discussion of arithmetical
errors it may be recalled that erasure errors may result
from a single defective circuit in some algorithms, for
instance in multiplication and division. To determine
P(a) for a given set of algorithms, it is necessary to ex-
press P(a) as the sum of probabilities that an undetect-
able error of magnitude IEI = ka will occur, given a
certain probability of failure for the circuits of the arith-
metic unit.

In summary, a systematic approach to the choice of the
optimum a for a specified arithmetic unit requires the
consideration of both P(a) and C(a) for values of a which
are acceptable from viewpoints of both cost and error
detection probability. The simultaneous minimization of
properly weighted values of both P(a) and C(a) over the
acceptable range of values of a may be expected to yield
a practically acceptable design for an arithmetic unit with
built-in error detection. The remaining significant prob-
lem is the assignment of the cost function C(m) and of
the undetected error probability function P(a) to a given
arithmetic unit. A second problem of great interest is the
choice of algorithms which yield the lowest values of
P(a) and C(a) among various possible implementations
of an arithmetic unit.

9

JPL TECHNICAL REPORT NO. 32-546

111. MINIMAL COST CHECKING ALGORITHM FOR THE

DETECTION OF ARITHMETICAL ERRORS

A. Introduction
Effectiveness and cost are the two principal criteria

which determine the usefulness of a scheme for detecting
arithmetical errors. A reference point for effectiveness
the set of specified distance d (d=2, 3, 4) codes which
were discussed in the preceding chapter. For these codes
the specified distance is attained, regardless of cost, by
the choice of the check modulus a. The codes have been
discussed with respect to addition (the SUM algorithm);
the implementation of checking for an entire set of arith-
metical algorithms remains to be developed.

The cost is proposed in this investigation as the second
criterion for determining the usefulness of a given check
modulus a. To serve as a reference point for cost investi-
gations a set of minimal cost algorithms for an arithmetic
unit with error detection of acceptable effectiveness is
developed. For this purpose it is necessary to postulate a
typical arithmetic unit and to consider the costs of incor-
porating error detection.

The choice of a typical arithmetic unit is governed by
the practical aspect of this investigation: the development
of an arithmetic unit for a redundant replacement system
which would serve as a self-testing and repairing guid-
ance computer for space vehicles. This practical applica-
tion of the checking algorithms directs the choices among
many alternatives in the specification of the typical arith-
metic unit. A summary of these alternatives is presented
below.

B. Alternate Choices for Arithmetical Checking
A series of choices which affect error checking must be

made in the selection of the characteristics of a particular
arithmetic unit. The initial choice is between an algo-
rithmic and a storage (table-lookup) arithmetic unit. The
latter may employ transmission type error detecting/
correcting codes, while the former requires arithmetical
checking. The objective of arithmetical checking may be
either automatic error correction, or error detection fol-
lowed by replacement or repair of the defective arith-
metic unit. The estimated lowest hardware cost indicates
the algorithmic arithmetic unit with error detection as
the first choice for the intended application,

Both arithmetical coding and separate check-symbols
may be used for error detection. Arithmetical coding
offers the advantage of a uniform code-protected number
system throughout the computer with the possibility of
error correction in the operands brought up from the
memory or from input buffers. Furthermore, less separate
checking hardware is required when separate operations
on the check symbols are eliminated.

Product coding is the only developed scheme of arith-
metical coding. It is suitable for checking addition be-
cause of the distributive law: aX + aY = a(X+Y). The
remaining choices are the base of the coded number sys-
tem and the value of the check modulus a. Base 2 is
preferable because of its simplicity and its direct rela-
tionship of circuit failures to changes in digit values. The
choice of a remains to be discussed below.

In summary, the preferred choice is an algorithmic
binary arithmetic unit with error detection implemented
by product coding all digital numbers throughout the
computer. To isolate the effects of single circuit failures,
a parallel adder with separate sum and carry circuits is
preferred. For a review, the alternatives for arithmetical
checking which were considered are summarized in
Fig. 3.

C. The Cost of Checking Algorithms
The error-detecting (decoding) algorithm for arith-

metical results computed from product coded digital
numbers 2 (2 = ax) computes the remainder R resulting
from a division of the result S by a. The value R=O
indicates that the digital number S is properly coded
and acceptable; any other value of R (a - 1 2 R 2 1)
indicates that result S contains an arithmetical error.
Transmission errors are included as a special case of
arithmetical errors.

The algorithm may be implemented either in the
arithmetic unit itself, preceding and/or following an
arithmetical operation, or in an independent checker
whose only function is the decoding algorithm. The use
of an independent checker is preferable because the sepa-
rate checker is not affected by failures of the arithmetic
unit. Concurrent operation with the arithmetic unit is a

1 0

-____ -

JPL TECHNICAL REPORT NO. 32-546

. . . n- I

CHECKING OF DIGITAL
ARITHMETIC

0 i . . . o 0-1' . . .

4
HARDWARE
(WIRED-IN) - I

times, plus the time for choosing quotient digits and the
time for testing the remainder for R=O. In error-
correcting codes, the nonzero value of R also conveys
information on the value of the error number.

D. The Minimal Cost Checker

ARITHMETIC UNIT
TRANSMISSION

ERRORS,

SEPARATE
CHECK SYMBOL CODED OPERANDS

x - - X (X) {x. C (X ,)

PRODUCT CODING OTHER ARITHMETICAL

CHOICE OF a UNDEVELOPED
X a x CODINGS

1 SPECIFIED I I M;INt!L I I OPTIMAL 1
DISTANCE EFFECTIVENESS?

Fig. 3. Checking methods for digitol arithmetic

further advantage of the separate checker. Consequently,
the cost and operation time of the checker for a given a

is one measure of the cost associated with this a.

The implementation of the decoding algorithm requires
hardware for a division of the result S by the constant a,
in which the quotient is not retained, and a subsequent
test of the remainder R for the condition R=O. Given an
ndigit binary number S the required hardware is an
ndigit shift register and a subtractor for subtracting Q at
the high-significance end of the shift register. Given an
a digit binary constant a (aa-1, . . . , a,) the subtractor
requires one full stage for every 1 except a0 and one-half
stage for every 0 and for ao. Alternatively, (2" - a) may
be added modulo 2" to the a leftmost digits of the S regis-
ter, if this operation is more economical. A circuit which
indicates when the subtraction is to be performed (i.e.,
when the quotient digit is 1) is also required. Any of the
existing division algorithms which yield a correct re-
mainder may be employed; the quotient digits are not
retained.

The cost of the decoder may be estimated from the
count of 0 and 1 digits in Q and 2" - a, allowing one
full adder (or subtractor) stage for every 1 except a. and
a half-stage for every 0 and for ao=l (since a is odd,
a o = l always holds). The time requirement is n--a shift-

An exception in the implementation of the division
S/a occurs for the special choice of

In this case the identity

Kri Kmodulo (I - 1) (25)

where K, r, and i are positive integers, is employed.
Choosing r = 2" and relabeling K = ti gives

I ; (2")' ti m-&r&! (p - 1) W)

Now any base-2 integer S with n digits S i may be
considered to be a base-2" integer T with k digits
ti (0 5 ti 5 2" - l), where n = ka. Consequently, the
value of S is

0 0 0

(27)

The remainder of S upon division by 2" - 1 can be com-
puted as the least positive residue of S modulo 2" - 1,
denoted lS12a-,, by adding the digits ti modulo 2" - 1.
Since every digit ti consists of a binary digits, this is the
addition of a-digits-long sections of S with an "end-
around" carry.

The minimum cost implementation of this algorithm
requires an n-digit shift register (R = ka) with n flip-
flops (n - 1 to 0) and one full binary adder stage, as
shown in Fig. 4. No decision on quotient digit value is
required.

h-27i-l BASE-2 u OUT

Fig. 4. Minimum cod checker for a = P- 1

11

JPL TECHNICAL REPORT NO. 32-546

S is stored in the shift register, and initially the flip-
flops a-1 to 0 of the shift register hold the digit to. The
entire register shifts right, with the digits in flipflops a
and 0 entering the adder and the sum digit entering the
flipflop a- 1. After n--a right shifts the flipflops a- 1
to 0 and the carry stored in delay At represent the re-
mainder R

and may be examined for the condition R = 0.

Faster implementations of the checking algorithm are
possible. If the single base-2 adder stage is replaced by
a parallel adder of a-bits length, the register shifts a bits
at once, and the addition to completed after k - 1
= (n /a) - 1 shifts. Faster addition may be performed
by employing a cascaded arrangement of carry-save
adders.

In summary, the check modulus a = 2" - 1 is ob-
served to have special properties which yield the lowest
cost for the implementation of the checker. Only one
full adder is required and special sensing circuitry
(needed to determine the quotient digit) is eliminated
for any a 2 2. An increase in speed may be gained by
additional hardware, since the division algorithm is re-
placed by a summation of several a digits long sections
of a binary number. A further advantage of a = 2" - 1
is that the value 2" - 1 is readily tractable in binary
arithmetic and may be expected to yield economical
algorithms for coded operands in the arithmetic unit.

E. The Effectiveness of a Check Modulus
Given the integers X to be product-coded as Z = a X

in the range B > X > 0, the undetectable error numbers
will have the magnitudes

IEI = C a ; with B > C > 0 (29)

When the uncoded number system employs complements
with respect to B to represent negative integers, then

A - a X = a (B - X) ; i.e., A = a B (30)

is required to hold for the product-coded number system
in which negative integers are represented as comple-
ments with respect to A. In this case, if the error magni-
tude I E I = C a is undetectable, then

is also undetectable.

The next question of immediate interest is the effec-
tiveness of the class of check moduli a = 2"-1 with
a 2 2. The expression 2"- 1 is relatively prime to the
base b=2 (and any b=2i), but no values of a=2"-1 are
listed among the product codes of distance d 2 3. Thus,
a=2"- 1 will yield only a distance d=2 (single-error de-
tecting) code with distance as an absolute criterion. The
undetectable errors for an adder operating modulo
A = B (2" - 1) have only the possible magnitudes

IEI = C (2"-1), for B > C > 0 (32)

These magnitudes correspond to all valid coded digital
numbers Z = (2"- l)X in the range A > 2 > 0.

The effectiveness of a = 2"-1 may be estimated by
considering how many error numbers of weight (minimal
multiplicity) 2, 3, etc. will remain undetected among all
possible error numbers of the given weight. All error
numbers of weight 1 will evidently be detected, since
C (2"-1) # 2i for a > 1. A further study of erasure
errors is necessary for algorithms in which a defective
circuit may be employed more than once.

F. Detection of Error Magnitudes of Weight 2
Next it is established how many and which error mag-

nitudes of weight 2 remain undetected when a = 2"-1
is used as a check modulus. The coded numbers 2 = a X
consist of n binary digits (zn-* - - - x i - - - 2,) and have the
range

According to the theory of minimal forms (discussed pre-
viously), the error magnitudes of weight 2 will be of the
form

l E I = 2 j - ~ 2 ~ for n - l > j > i > o (34)

excluding i = i + 1 (Le., adjacent ones), but not exclud-
ing the restricted minimal form IEI = 2"-l + 2"-2.

To count magnitudes IEI = 2i + 2; (with i # i + l),
the form is restated as IEI = 2; (2" + 1) with
n - 1 2 m 2 2 and (n-1) - m 2 i 2 0. Counting the
multiples (2m+1) for every value of m, there are

1 2

JPL TECHNICAL REPORT NO. 32-546

n - 2 multiples for m = 2, (n-3 2 i 2 0)

n - 3 multiples for m = 3, (n-4 2 i 2 0)

will yield all undetectable weight-2 error magnitudes of
the form 2" k 1, that is, with the + 1 digit in the right
end position. The remaining undetectable weight-2 mag-
nitudes will be of the form

IEI = 2i C (2"-1) = 2i (2"+ l), for n-m > i > 0

1 multiple for m = n-1, (i = 0) To solve C (2"- 1) = 2" k 1, observe first that C is an
odd integer, since in C 2" - C = 2" 1 the right side is
odd, while C 2" is even. Furthermore, the only solution
for

C(2"-1) = 2" + 1

giving a total of (n-1) (n-2)/2 different magnitudes.
The same count exists for magnitudes 2i - 2'; conse-
quently, there exists a total of

exists when u = 2 and m = 2j + 1 (with i 2 l), giving N (2) = (n-1) (n-2) + 1 (35)

C = (2*i+' + 1)/3, for a = 2, m = 2i +1 (37)
weight-:! error magnitudes, including (n-1) (n-2) mag-
nitudes with the unqualified property M and one error
magnitude IEI = 2"-* + 2n-2 with the restricted prop-
erty M. Each error magnitude I E I has a corresponding
symmetrical pair of values I+ IEI, and, consequently,
there are

The remaining solution is required for

c (2"-1) = 2"-1

where C is an odd integer in the range A/(2"- 1) > C > 0.
An integer solution

2N (2) = 2 (n-1) (n-2) + 2

distinct error numbers of weight 2 for the specified num-
ber length of n binary digits. exists for m = iu, that is, for IEI = 2i" - 1 < A.

It remains to be determined how many and which
weight-:! error magnitudes from the entire set of
(n- 1) (n-2) + 1 weight-2 magnitudes will remain un-
detected for a = 2"-1. The undetectable magnitudes
are

To count the undetectable weight-2 error magnitudes
the error numbers are assumed to consist of

n = k u (39)

binary digits and addition is modulo A, where
IEI = C (2"-1), for A/(2"-1) > C > 0

and the weight-2 magnitudes are described by

The undetectable IEI are now IE1 = 2ia - 1, for
k - 1 2 i 2 1, and all multiples 2' IEI < 2ko - 1.
Counting the multiples, there are

IEI = 2i (2" * l) ,withA > IEI > 0

consequently, the solution of the equation
a

2u

multiples for i = k-1 ; (a - 1 2 i 2 0)

multiples fori = k-2 ; (2u - 1 2 i 2 0) .
c (2"-1) = 2" 2 1 (36)

subject to the conditions .
(k-1)amultiplesfori = 1; (ku - a - 12 i 2 0) for integer values of C in the range

which give the total count of A/(2"-1) > c > 0

13

JPL TECHNICAL REPORT NO. 32-546

G(2) = ~ (1 + 2 + ... +k-1) = (k-l)ka/2 (41)

undetectable weight-2 forms IEI = 2ja - 1. Since
k = n/a the count may be stated in terms of n and a

For the special case a = 2, there is undetectable
IEI = 22j+1 + 1 for n > 2i + 1 > 1, and this adds

N (2)' = (~1-2)~/4 (43)

undetectable error magnitudes of weight 2 for the check
modulus a = 3.

Since there are N (2) = (n-1) (n-2) + 1 weight-2
error magnitudes, the fraction of undetected weight-2
error magnitudes for a 2 3 is

For the case a = 2, the error count v(2) ' must be
added, giving the fraction

It may be concluded that the choice of a 2 3 is quite
effective in the detection of weight-2 error magnitudes.
For example, given n = 24, the choice a = 3 leaves
16.6% weight-2 magnitudes undetected; a = 4 leaves
11.8%; and a = 6 leaves 7.1%. For n = 2S and a = 5,
there are 9.0%. Since the values and forms of these mag-
nitudes are known, further protection may be considered,
if necessary.

I t remains to be shown that the detectability of
weight-1 and weight-2 error magnitudes corresponds to
the detectability of a single use of one and two defective
circuits, respectively. Given A = B (2" - l) , the two error
magnitudes which may be caused by a single failure are

Since the only factors of 2 j are powers of two,

25 # C (2"-l), for a > 1, and B > C > 0

All weight-1 error magnitudes will be detectable, and,
therefore, all magnitudes B (2"-1) - 2j will also be
detectable.

For two independent failures in positions i and i (with
j > i) , the value of the error number will be

E , = Ej 3- Ei modulo A; (n-1 2 i > i 2 0)

Both Ej and Ei will assume one of four values: k 2i and
k (A-2i). The sixteen different possibilities of modulo
A addition give the eight values:

These values are reduced to four magnitude classes

It has been shown that when IEI = K is undetectable,
then IEI = A-K is also undetectable; consequently, the
problem reduces to finding the undetectable error num-
bers of weight 2.

G. The Detection of Erasures with a = 2 a - I
The weights and the values of erasure numbers E' in a

modulo A = 2" - 1 system are of immediate interest. It
is assumed that any position i of the n-digit result can be
affected only once by the failed component, although the
failure may affect several positions: the set {j}. The pos-
sible magnitudes of erasure numbers (for both up- and
down-erasures) are

IE'I = 21
1 . .

IE'I = (2-1) - c 2 j

Each affected'position may be included or omitted in the
summation; therefore, for m positions there are 2(2m)
possible values of I E'I. The undetectable erasures for
a = 2" - 1 will be those satisfying

and their digitwise complements.

14

JPL TECHNICAL REPORT NO. 32-546

Since the list of affected positions depends on the spe-
cific algorithms, the set of undetectable erasure magni-
tudes should be minimized by a careful design of the
algorithms. For instance, excluding the number "all zerosn
and using the value A = 2" - 1 "all ones" as the only
allowed representation of zero will permit the detection
of all total down-erasures. The probability of a total up-
erasure is reduced by avoiding completely serial algo-
rithms and by disallowing the value zero (all ones) as an
operand in ordinary multiplication and division algo-
rithms.

Considerable protection against erasures may be ex-
pected from b a ~ e - 2 ~ operation (instead of base 2) in serial
addition. In a parallel arithmetic unit recoding of multi-
pliers and quotients allows base4 algorithms (two bits
at a time); a single parallel addition is not subject to an
erasure. In both cases the algorithms are such that an
erasure may not affect adjacent positions of the result.
ine eiiectiveness oi specific dismbuiions of suscepubie
positions is verified by solving the equation for un-
detectable erasures for every possible configuration of

-

2i.

H. Detectability of Controlled (Nonadjacentl
Erasures

To determine the effectiveness of base4 operation, it
is necessary to count the percentages of erasures which
will remain undetected for various values of a. I t is as-
sumed that base-4 operation will limit the list of affected
positions in a result either to all even-numbered posi-
tions, or all odd-numbered positions. Consequently, an
n-bit result will be subject to 2"/* - 1 possible values of
E'. In the case A = aB, the complements A - E' will
also be undetectable. An increase of two bits (from n to
n + 2) in word length will add 2"12 new possible values
of E'. The solution of the equation

for all 2"12 - 1 values of E' will give the percentage of
undetectable erasures for a given word length n and for
a given check modulus a. If complements of E' are par-
tially or fully detectable, the percentage is appropriately
reduced.

To determine the effectiveness of some convenient
values of a, a computer program was written to count
the undetectable erasure patterns E' (satisfying1E'I = Ca)
for the check moduli

a = 2" - 1,with 12 2 a 2 2

and word lengths n = ka 2 36, for which 2h - 1
= (2" - 1) B is satisfied and the product code is digit-
wise complementable. The results are summarized in the
Appendix, Section I. The tables list the total number of
possible erasure patterns, the count of undetectable
erasure patterns, and the percentage of undetectable
errors for all word lengths n = ka. The incremental count
and percentage of undetectable errors are also given for
every increment of range. For an odd value of n, the
worst case of (n + 1)/2 affected positions is chosen; for
even values of n, there are n/2 affected positions.

For comparison the undetectable erasure patterns
(base-4 operation) were also counted for distance 3 and
distance 4 codes given by Peterson (Ref. 2, p. 239, table
13.1) which satisfy aB = 2" - 1. The results are given in
the Appendix, Section 11. I t is interesting to observe that
the effectiveness (percentage of undetectable erasure pat-
terns) of these codes is similar to that of the a = 2" - 1
codes for the same word length and the same amount of
redundancy.

In order to provide a list of all possible choices satisfy-
ing 2"-1 = aB, a list of the prime factors of 2"-1 for
n 5 100 is given in the Appendix, Section 111. The effec-
tiveness of other values of a (expressed as the percentage
of undetectable erasure patterns for base-4 operation)
will be investigated and compared to the current results.

15

JPL TECHNICAL REPORT NO. 32-546

IV. ARITHMETICAL ALGORITHMS FOR

A. Introduction
The remaining problem (after the choice of a checking

algorithm) is the design of a set of algorithms for an
arithmetic unit which computes with product-coded num-
bers. The operands are products (a X , a Y) instead of or-
dinary binary numbers (X,Y) and the result S = aX*aY
should be the properly coded form S = a (X*Y) of the
uncoded result X*Y.

It may be expected that because of these requirements
there will be an increase in the cost of the arithmetic unit
both in hardware and in the time required for the algo-
rithm. It may be further expected that this cost will vary
for different values of a, similar to the cost of the check-
ing algorithm.

On the other hand, the probability of an undetected
single defective circuit also depends on the hardware
which is chosen to implement the algorithms. For in-
stance, the logic design and length of the adder in the
arithmetic unit determines which types of erasures
and/or weight-1 errors will be caused by a single defec-
tive circuit within the adder.

The principal objective in the choice of algorithms is to
hold both the additional cost and the probability of unde-
tected defective circuits within reasonable bounds. The
algorithms to be implemented are the usual repertoire of
a general purpose digital computer: SUM, DIFFER-
ENCE, LEFT SHIFT, RIGHT SHIFT, ROUNDOFF,
PRODUCT, and QUOTIENT. The singularities "SUM
OVERFLOW" and "QUOTIENT OVERFLOW" should
be indicated. For all algorithms it is required that the
output result should be the product-coded form of the
result which would have been generated by an ordinary
arithmetic unit. The n-digits-long binary operands are
coded forms S = (2"-1)X.

6. The SUM and DlffERENCE Algorithms
In the implementation of addition and subtraction the

first choice is that of the representation of negative num-
bers; either sign-and-magnitude or complement forms
may be used for this purpose. For the purpose of error
detection the sign-and-magnitude forms are markedly
inferior, since errors in the transmission and manipulation
of the sign bit are nonnumerical and, therefore, not de-
tectable by arithmetical checking.

PRODUCT-CODED BINARY NUMBERS

In complement forms the sign is indicated by the value
of the number; consequently, an error in the sign digit is
arithmetically detectable. The complement of the value X
in the range M 2 X 2 0 with respect to A is defined as

C A (X) = A - X , with A > 2M (47)

The two most convenient choices of A in conventional
binary arithmetic with n-digits-long integers are

1. A = 2", called radix (two's) complement;

2. A = 2" - 1, called digitwise (one's) complement.

These two choices are preferable because addition mod-
ulo A can be readily performed by either discarding the
carry out of the leftmost position (i = n- l) , or adding it
in the rightmost position (i = 0).

For product-coded binary numbers there exists an
additional requirement

C A (a X) a c B (X) (48)

where the product-coded numbers a X are complemented
with respect to A and the uncoded numbers X are com-
plemented with respect to B, that is

The requirement on complements is now expressed as
A - a X = a (B-X), which yields the condition

A = a B (51)

to be satisfied by the constants A and B for a given choice
of a, which in our case is a = 2" - 1. Trying the two
practical values of A, it is found that for A = 2" no
integer solution exists for B = 2"/(2"-1) with a 2 2.
For the choice of A = 2" - 1 there is

2"-1 B=-
2"-1

and integer solutions for B exist whenever n = ka (in-
teger k > l), giving

16

JPL TECHNICAL REPORT NO. 32-546

B = g(k-1)" + 2(k-2)" + . . . + 2" + 1 (53)

This value of B is not convenient for modulo B addition
of uncoded numbers; however, uncoded numbers will not
occur in the computer, and all additions will be per-
formed modulo A = 2"-1, which is a relatively conven-
ient choice.

In conventional floating-point addition the sum of two
n-digit numbers is defined to be an (n+l)-digit number,
which may have to be normalized by left or right shifts.
Consequently, it is necessary to extend the range of the
operands by one digit to the left and to form the sum of
two (n+l)-digit numbers. Effectively, the value of A is
changed from 2" - 1 to 2"" - 1 (or from 2" to 2n.1).

The choice of B determines the range for the uncoded For product-coded operands and A = 2" - 1 the next
numbers X to be higher acceptable value A' should again satisfy

B > 2M, or B 2 2M+1 A' = (2"- l)B'

which gives the greatest representable positive integer M
as

f i e choice of A' = Zk"" - 1 gives the solution with the
next higher integer value of B, which is

Given a complement form 2 = A - a X, to generate

A' - a X = (A'-A) + (A-a X) = Z + (A'-A)

the range extension is performed by adding (A'-A) to
the coded complement form z. Observe that

The rmge G f unceded nuxbers x is, &erefme,

M 2 X 2 - M

The advantage of this choice of M is that the coded num-
bers 2 = a X form a one's-complement number system, in

is in true form (z,,-~ = 0) or in complement form
(z,,-~ = 1). The rules of a one's-complement arithmetic
unit will apply in this case; however, it must be remem-
bered that the numbers 2 are actually products (2"- 1)X,
and that X is the actual operand specified by the pro-
grammer.

which the sign digit zn+ indicates whether the number 2 a-1

A' - A = 2h(2"- 1) = 2ko C 2'

and, consequently, the extension is performed by attach-
ing u digits of value 1 to the left end of 2. If Z is a true
form, a digits of value 0 are attached.

(sl)
0

The existence of two forms of the value "zero"-"all
zeros" - corresponding to (2" - 1)0 and "all ones" corre-
sponding to (2"-1)B = A = 2" - 1 can be used to
advantage in checking by considering the "all zeros" form
to be an error and, thus, detecting all total down-
erasures. It is also important to recollect that the choice
of B = A/(2"-1) was also the most convenient choice in
the evaluation of the effectiveness of check modulus
a = 2" - 1.

The singularity SUM OVERFLOW must be indicated
for coded numbers 2. In a fixed-point arithmetic unit
this may be conveniently implemented by a comparison
of the sign digits of the input operands (Y"-~, zn-J and of
the sum (sn-J. The case

To reduce the length back to n digits, the (n+a)-digit
number is shifted right until the a + l leftmost digits are
identical with the original sign digit; then a leftmost
digits are dropped.

If correction of SUM OVERFLOW is the only objec-
tive of the extension, an actual extension by only one
digit at the left is sufficient, since all a new digits will
assume the same value after an addition (with or with-
out OVERFLOW). The general extension/reduction rule
remains in effect and is important for other algorithms.

C. The Arithmetic SHIFT Algorithms
The two arithmetic shifts of one position may be inter-

preted in terms of addition: the LEft Arithmetic Shift
(LEAS) of 2 as the addition 2 + 2, and the RIght Arith-
metic Shift (RIAS) as the addition 2 + (-Z)/2. The

Yn-1 = Zn-1# sn-1

indicates that overflow has occurred.

(55)

17

JPL TECHNICAL REPORT NO. 32-546

objective of the shift algorithms is to provide a fast
method for the multiplication and division of the operand
2 by the base, integer 2.

The LEAS algorithm should yield W = a(2X) for true
forms (2 = ax , zka-1 = 0) , and W = A - a(2X) for com-
plement forms (Z = A - a x , &a-1 = 1) . The shift is not
arithmetical if OVERFLOW will occur, that is, if
2ka-l # 2ka-Z before the shift. The result w of the LEAS
algorithm is described in terms of the digits of the oper-
and Z as follows:

The "end-around shift of zh-l is necessary to form the
correct result for the complement forms as follows:

W = 2(A-aX) - 2ka+l =

2A - (2h-1) - 2aX = A - a2X

The RIAS algorithm should yield as its result V (given
the operand Z) , V = a(X/2) for true forms (2 = ax) ,
and V = A - a(X/2) for complement forms (2 = A - ax) .
Observe that V may be exactly represented only for even
values of X , since a X / 2 will only be an integer if X is
even. (a is always odd.) If X is odd, ROUNDOFF (to the
closest even X) must precede or be combined with the
shift .

In true forms (2 = ax), X will be even when Z is even,
that is, when zh-l = zo = 0 is satisfied. In complement
forms (2 = A - ax), X will be even when Z is odd, that
is, when zh-] = zo = 1 is satisfied. This is true because
A = 2h - 1 is odd, and then a X = A - Z is even for
odd values of 2. The result V of the RIAS algorithm is
described in terms of the digits of operand Z as follows:

if zka-l = zo.

The "end-around shift of zo again is required because
of complement forms

V = (A-aX-zo) /2 + ~ ~ 2 ~ ~ - ~ =

A / 2 - aX/2- 1/2 + Zh-' = A - aX/2

When the condition & - I = zo is not satisfied, the
ROUNDOFF algorithm (discussed below) must be ap-
plied to Z in order to satisfy the condition. Roundoff by
truncation (discarding zo) cannot be used, since the
truncation will not yield a product-coded number.

Shifts over several positions may be considered as a
sequence of single shifts. They may be executed if the
specified conditions are satisfied for every single shift in
the sequence.

D. The (2. - I) Z Algorithm
Multiplication by the constant 2" - 1 is necessary in

the implementation of the QUOTIENT algorithm. The
constant 2" - 1 possesses properties which make the en-
coding of 2 into (2" - l) Z relatively fast and simple in a
binary arithmetic unit.

Given a ku digit operand 2 in true (2 = ax) or in
complement (2 = A - a x) form, initially the range is
extended by prefixing a O-digits or a l-digits at the left
end of 2 to get (k + l) a digit operand 2' = a X or
2' = A' - ax. The expansion of range has been dis-
cussed in connection with the SUM algorithm. Now 2'
is shifted a positions to the left according to the LEAS
algorithm, generating 2"aX or A' - 2"aX. The operand
2' is also complemented, generating A' - aX or ax. One
addition modulo A' = 2(k+1)a - 1 will yield

W = 2"aX + (A' - ax) aX(2" - 1) modulo A'; or

W = (A' - 2"aX) + aX 3 A' - aX(2" - 1) modulo A'

An "end-around carry will occur if and only if Z is in
true form and may be inserted in advance to speed up
the addition.

The result will be (k + l) a digits long; consequently,
provisions must be made to store the extended number as
well as to add modulo A' = 2(k+1)a - 1. A circuit arrange-
ment for serial multiplication by 2" - 1 is shown in Fig.
5; in this arrangement (k + l) a steps of addition are
required. The adder may add a digits at a time; then only
k + l steps are needed. Finally, a single step would be
sufficient in a (k + 1)a-digit, parallel adder.

1 8

~~ -

JPL TECHNICAL REPORT NO. 32-546

RESULT W

ADDER INVERTER

'"tm+o " ' W O

(m + l + u DIGITS) Z m ' " r , Zm".ZO
+ v
u MGlT m+l DIGIT

EXTENSION OPERAND Z t
INITIALLY: im

Fig. 5. Serial circuit for the (P- 1)Z algorithm
with m = ka-1

€. The W/(2a - I I Algorithm
Division by 2" - 1 is required in the PRODUCT

algorithm, and is also very useful in the ROUNDOFF
algorithm. The method for division by 2" - 1 has been
discussed in the investigation of the checking algorithm;
however, only the remainder was of interest there, and
the quotient was actually never generated. The same
considerations which led to the minimal cost checker can
be applied to actual division by 2" - 1, in which the
quotient is generated, and the remainder is known to be
zer0,sinceZ = aXorZ = A - UX = aB - UX = a (B - X)
will hold for every product-coded number in the com-
puter.

When the remainder is known to be zero, division is an
inverse operation to multiplication, which was described
in the preceding section. Given the (k+l)a-digit forms
W, the forms Z must be recovered:

1. true form: W = aX(2a-l), recover Z = ax;

2. complement: W = A' - ~X(2~-1) , recover
Z = A - a X .

The algorithm may be generally stated as follows:

since w = ~ Q Z + Z modulo A'; that is, the digits of 2
may be recovered by adding 2"2 to the operand W, and
accounting for the "end around" cany. The "end around"
carry must be determined and employed in advance. The
entire division process is possible because the rightmost
a digits of 2"Z are known to be the same as the sign digit

of W (and of 2"Z). The "end around" cany co also de-
pends on the sign digit (~h-~,. , ,) of w. When W is a com-
plement form, co = 1. The carry occurs for W in
complement form because the result is true and 2"2 is
true; while for w in true form, 2"2 is complement, Z is
complement, and no "end around carry occurs.

When the "end around carry and the a rightmost
digits of %% are known, the a rightmost digits of Z can
be computed; they, in turn, are the next u digits of 2"2,
etc. The digits of 2 may be generated either serially, or
a digits at a time, beginning with the rightmost digit(s).
Designating 2"Z = Y, the algorithm is

co = Wka-l+a

- - y j = ~ ~ - ~ + ~ , f o r u - l > j 2 0

The digits Zj for ku-1 + a 2 i 2 ka will all be iden-
tical with Zh-l and may be discarded, thus contracting
Z to the length of ka digits.

A circuit for serial division by 2" - 1 is shown in Fig. 6;
it requires ka steps of addition. A parallel adder for a
digits at a time will permit completion in k steps. The
circuit employs the same hardware as the multiplication
circuit of Fig. 5.

INITIALLY: Fmfl '..W&
(u DIGITS)

OPERAND W BINARY RESULT Z

ADDER
(m+U+l digits)

(m + I DIGITS)

INITIALLY: wm+,,

Fig. 6. Serial circuit for the W / (F - 1) algorithm
with m = ka-1

The important observation here is that division has
been replaced by modulo A' addition in which the "end

1 9

JPL TECHNICAL REPORT NO. 32-546

around carry co is known in advance to be equal to the
sign digit w,,,+~ of the operand W, and is stored in the
carry delay At. The rightmost a digits of 2"2 are also
known. They are all equal to and initially occupy
the a-digits-long delay line or shift register a At. The
algorithm for division by 2"-1 is recursive; therefore,
only a digits of the result Z can be generated at once. TO
get a digits at once, the single-digit adder of Fig. 6 is
replaced by an a-digit, parallel adder, and the inputs are
all a digits from the delay line a At and a digits of the
operand W.

F. The ROUNDOFF Algorifhm
The ROUNDOFF algorithm is employed to reduce the

length of a digital number by discarding one or more
digits at the least significant end of the number and
adjusting the value of the remaining digital number
according to a specified roundoff rule. The simplest
application of this algorithm occurs in the RIAS algo-
rithm. The rightmost digit of a product-coded number
may not be dropped, as for uncoded numbers, since
removal of a digit may generate an unacceptable result.
The RIAS algorithm requires the condition ~ k ~ - ~ = zo to
be satisfied. This condition assures that X is an even
integer (X ,) in the coded forms Z = ax, or Z = A - ax,.
If the condition is not satisfied, X is an odd integer (X ,)
and the rounded form ax, = a (X , + l) must be generated
before the shift. The rounded form Z' will have the coded
values

Z' = ax, + a, or Z' = A - ax, - a, for up-rounding;

Z' = axo - a, or Z' = A - ax, + a, for down-rounding.

The coded form (+ a) of e 1 is added to Z to generate
Z'; to avoid bias, rounding may be performed in both
directions with equal probability. One convenient round-
ing rule for the case ~ k ~ - ~ = 0 and zo = 1 is to add
a = 2" - 1 by dropping zo and adding 2". In any case it
is important to avoid overflow which may be caused by
up-rounding a number of maximum allowed magnitude
IZ l = A - a.

The second and more general problem of roundoff is
the reduction of a double-length result (for instance, a
product) to the standard length. A simple truncation of
the product-coded number will not yield a product-coded
number of specified length. The coded number must be
rounded by the addition or subtraction of an integral
multiple K(2" - 1) of the check modulus 2" - 1. The value
of K is the value which is added or subtracted during the
roundoff of an uncoded number.

Roundoff in conventional binary arithmetic is relatively
simple: given a 2n digit number X = 2" F + G, where
F and G are n-digit numbers, so that G is in the range
2" > G > 0, the only two alternatives are

(a) form X - G = 2" F , (rounding down);

(b) form X + (2"-G) = 2"(F+1), (rounding up).

The first alternative is implemented by discarding G and
the second is implemented by discarding G and adding 1
in the least significant position of F. The choice between
(a) and (b) may depend on the value of G or on the value
of the rightmost digit of F ; or it may be always (a), which
is the case of simple truncation.

Product-coded binary numbers a x should be rounded
in exactly the same fashion. The roundoff procedure con-
sists of the following steps

1. Compute the value of G by applying the W/(2" - 1)
algorithm to ax;

2. choose the rounding method (up or down);

3. compute aX - aG for rounding down, or

4. compute aX + a(2"-C) for rounding up.

After the third step the rightmost n digits of the result
are all 0's or all 1's (for true and complement forms of
ax, respectively), and the result may be contracted to
single length by discarding these digits. The detailed
implementation of the ROUNDOFF algorithm is to be
considered in further study of the arithmetical logic.

G. The PRODUCT Algorithm
The principal observation in the PRODUCT algorithm

is that the operands are product-coded numbers, and the
result of a conventional multiplication (a x) (aY) = a2XY
will not be the product-coded form aXY. The form
(2"- 1)XY is readily obtained by applying the W/(2" - 1)
algorithm to the intermediate result (2" - 1)2XY. The
PRODUCT algorithm is then concluded by the ROUND-
OFF algorithm.

Given the ka digit operands (2"- l) X and (2"- 1)Y, the
complete PRODUCT algorithm consists of the following
steps

1. Extend the operand range to 2ka digits;

2. Perform a conventional one's-complement multipli-
cation to generate the 2ka-digit result (2" - 1)P'
= (2"-1)2Z;

20

JPL TECHNICAL REPORT NO. 32-546

3.

4.

Divide (2"- 1)P' by 2"-1 using the W/(2"- 1) algo-
rithm to generate the (2k-1)u-digit product

Apply the ROUNDOFF algorithm to contract P' to
the ka-digit (single length) result P = (2"-1)F.

P' = (2"-1)Z;

The value of F should be the specified value of the
single-length product of uncoded binary numbers X and
Y, expressed in the system in which negative numbers
are represented by complements with respect to
B = (2h-1)/(2"-1).

Several problems remain to be resolved in the detailed
logic design of the arithmetic unit. They include the
application to fractional ranges, the selection of the most
suitable one's-complement multiplication scheme and the
efficient implementation of roundoff. Another problem of
interest is the existence of undetectable single errors

modulus, that is, when X = k, (2"-1) and Y = k, (2"-1)
is encountered. A further study of these problems will be
presented in the detailed description of the arithmetic
unit.

when &e uncoded operands Eire m1lltiples of &e check

H. The QUOTIWT Algorithm
An ordinary binary division of dividend X by divisor Y

yields a quotient Q and a remainder R such that
X = QY + R is satisfied, with R < Y. Dividing aX by

aY gives aX = uYQ + aR, and the quotient Q is gener-
ated in uncoded form; consequently, it is not protected
against errors.

To generate a coded quotient aQ, start with the divi-
dend a2X and in this case obtain

aZX = (4) (aY) + a2R

The QUOTIENT algorithm for product-coded operands
is composed of the following steps

Apply the (2"-1)Z algorithm to the dividend

Perform binary one's-complement division to get the
ka-digit quotient (2"- 1)Q;

The coded remainder (2"-1)R is obtained from
(2"-1)*R by means of the W/(2"-1) algorithm.

2 = (2"-1)X;

It is interesting to observe that the intermediate r d t
(2a-1)22 of the PRODUCT algorithm may be directly
applied as the dividend a2X in the QUOTIENT algo-
rithm.

The detailed design of the arithmetic unit requires the
choice of a suitable one's-complement division method
and the choice of a range for the coded operands. A
method of indicating singularity QUOTIENT OVER-
FLOW (illegal division) is also required.

21

JPL TECHNICAL REPORT NO. 32-546

REFERENCES

1. G. W. Reitwiesner, "Binary Arithmetic", Advances in Computers, edited by F. 1. Ah,
Vol. 1, section 8, pp. 244-260, Academic Press Inc., New York, 1960.

2. Peterson, W. W., Error Correcfing Codes, The Massachusetts Institute of Technology
Press and John Wiley & Sons, Inc., New York, pp. 236-244, 1961.

3. Peterson, W. W., "On Checking an Adder", IBM Journal of Research and Develop-
ment, Vol. 2, pp. 166-168, April, 1958.

4. Garner, H. L., "Generalized Parity Checking", IRE Transacfions on Electronic Com-
puters, Vol. EC-7, No. 3, pp. 207-213, September 1958.

5. Bloch, R. M., R. V. D. Campbell, M. Ellis, "The Logical Design of the Raytheon Com-
puter", Mathematical Tables and Other Aids to Computation, Vol. 3, pp. 286-295;
317-323, October, 1948.

6. Bloch, R. M., "Diagnostic Information Monitoring System," U.S. Patent No. 2,634,052,
application: April 27, 1949, patented: April 7, 1953, U.S. Department of Commerce,
Washington, D.C.

7. Diamond, J. M., "Checking Codes for Digital Computers", Proceedings of the IRE,
Vol. 43, pp. 487-488, April 1955.

8. Brown, D. T., "Error Detecting and Correcting Codes for Arithmetic Operations",
IRE Transactions on Electronic Computers, Vol. EC-9, No. 3, pp. 333-337, September
1960.

9. Henderson, D. S., "Residue Class Error Checking Codes", preprints of papers pre-
sented at the 16th National Meeting of the Association for computing Machinery,
Los Angeles, September 5-8, 1961.

10. Kraitchik, M., Recherches sur la Theorie des Nombres, Gauthier-Villars, Paris, 1929,
VOI. 2, pp. 84-88.

ACKNOWLEDGMENT

L 22

The author wishes to acknowledge many stimulating discussions
with J. J. Wedel and A. D. Weeks. The assistance of A. D. Weeks in
verification of the arithmetical algorithms by simulation and in the
preparation of the tables in Appendix Sections I and I1 is gratefully
acknowledged. The programs for the counting of erasure errors were
written by E. L. Haskell, and the hardware for simulation of an in-
dependent checker was constructed by R. 0. Davies.

~-

JPL TECHNICAL REPORT NO. 32-546

Total

1

3

7

15

31

63

127

255

51 1

1023

2047

4095

8191

16383

32767

65535

131071

262143

APPENDIX

1. EFFECTIVENESS O F BASE4 OPERATION FOR a = 2"- 1

Table A-1. a = 2, a = 3

Increment

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

n

Count

0

1

4

9

36

73

292

585

2340

4681

18724

87381

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

%

0

14.3

12.9

14.3

14.1

14.3

14.3

14.3

14.3

14.3

14.3

14.3

Count of possible erasure numbers Total undetectable erasure numbers Increment of undetectable erasure numbers

Count

0

0

1

4

10

21

42

84

169

340

682

1365

2730

5460

10921

21844

43690

87381

Table A-2. a = 3, a = 7

0

0

14.3

26.7

32.3

33.3

33.1

32.9

33.1

33.2

33.3

33.3

33.3

33.3

33.3

33.3

33.3

33.3

Count of possible erasure numben
n

Increment

3

6

9

12

15

18

21

24

27

30

33

36

3

7

31

63

255

51 1

2047

4095

16383

32767

131071

262 143

3

4

24

32

192

256

1536

2048

12288

16384

98304

131072

0

0

1

3

6

11

21

42

85

171

342

683

1365

2730

5461

10923

21846

43691

0

0

25.0

37.5

37.5

34.4

32.8

32.8

33.2

33.4

33A

33.3

33.3

33.3

33.3

33.3

33.3

33.3

ncrement of undetectable erasure numbers I
Count

0

1

3

5

27

37

219

293

1755

2341

14043

43691

%

0

25.0

12.5

15.6

14.1

14.5

14.3

14.3

14.3

14.3

14.3

14.3

23

JPL TECHNICAL REPORT NO. 32-546

Count of possible erasure numbers

Total Increment

3 3
15 12
63 48
255 192
1023 768
4095 3072
16383 12288
65535 49152
2621 43 196608

n

4
8
12
16
20
24
28
32
36

Total undetectable erasure numbers

Count %

0 0
0 0
1 1.59
16 6.27
100 9.78
401 9.79
1316 8.03
4368 6.67
16705 6.37

Count

0
0
1
15
84
301
915
3052
12337

Table A-4. a = 5, (Y = 31

%

0
0
2.08
7.81
10.90
9.80
7.45
6.21
6.27

5
10
15
20
25
30
35

7 7
31 24
255 224
1023 768
8191 7168
32767 24576
262143 229376

n

5
10
15
20
25
30
35

Count of possible erasure numbers Total undetectoble erasure numbers Increment of undetectable erasure numbers

Total Increment Count % Count %

7 7 0 0 0 0
31 24 1 3.23 1 4.17
255 224 8 3.14 7 3.13
1023 768 33 3.23 25 3.26

8191 7168 264 3.22 231 3.22
32767 24576 1057 3.23 793 3.23
262143 229376 8456 3.23 7399 3.23

Count

0
1
8
33
264
1057
8456

Count %

0
3.23
3.14
3.23
3.22
3.23
3.23

0
1
7
25
231
793
7399

n
Total Increment

0
4.17
3.13
3.26

1 3.22
3.23

~ 3.23

6

12
18
24
30
36

Count of possible erasure numbers Total undetectable erasure numbers
n

Total Increment Count %

7
63
51 1
4095
32767
262143

Increment of undetectable erasure numbers

Count %

7
56
448
3584
28672
229376

Count of possible erasure numbers Total undetectable erasure numbers
n

Total Increment Count %

Increment of undetectable erasure numbers

Count %

0
0
1

64
lo00
8001

6 7 7 0 0
12 63 56 0 0
18 51 1 448 1 0.20
24 4095 3584 64 1.56
30 32767 28672 lo00 3.05
36 262143 229376 8001 3.05

0
0
0.20
1.56
3.05
3.05

0 0
0 0
1 0.22

63 1.76
936 3.26
7001 3.05

0
0
1

63
936
7001

0
0
0.22
1.76
3.26
3.05

24

JPL TECHNICAL REPORT NO. 32-546

n
Total

Table A-6. a = 7, a = 127

Increment Count

0

1

16

129

2064

x

0

0.79

0.78

0.79

0.79

Count

0

1

15

113

1935

x

0

0.89

0.70

0.79

0.79

n
Total Increment Count x Count x

n
Total Increment Count x Count x

Count of possible erasure numbers

Total Increment

1

Total undetectable erasure numbers Increment of undetectable erasure numbers

Count x Count x

10 31 31

20 1023 992

30 32767 31744

0 0 0 0

0 0 0 0

1 1

0

0

1

0 0 0
0 0 0

1

Increment of undetectable erasure numberr

7

14

21

28

35

~~

15

127

2 w

16383

262143

15

112

1920

14336

245760

Table A-7. a = 8, a = 255

15

240

3840
61440

8

16

24

32

15

255

4095

65535 255 0.42

Table AS. a = 9, a = 51 1

Total undetectable erasure numbers I Increment of und-Me -sure numban I

9

18

27

36

31

51 1

16383

262143

31

480
15872

245760

0

0.20

0.20

0.20

0

1

31

48 1

0

1

32

513

0

0.20

0.20

0.20

Table A-9. a = 10, a = 1023

32767 31744

25

JPL TECHNICAL REPORT NO. 32-546

11

22

33

Table A-10. a = 11, LY = 2047

63 63 0 0 0 0

2047 1984 1 0.05 1 0.05

131071 129024 64 0.05 63 0.05

n

11

22

33

Count of possible erasure numbers Total undetectable erasure numbers Increment of undetectable erasure numbers

Total Increment Count % Count %

63 63 0 0 0 0

2047 1984 1 0.05 1 0.05

131071 129024 64 0.05 63 0.05

Count of possible erasure numbers
n

Total Increment

Total undetectable erasure numbers Increment of undetectable erasure numbers

Count % Count %

26

Count of possible erasure numbers Total undetectable erasure numbers
n

Total Increment Count %

12 63 63 0 0

24 4095 4032 0 0

36 2621 43 258048 1

Increment of undetectable erasure numbers

Count %

0 0

0 0

1

JPL TECHNICAL REPORT NO. 32-546

63

63

2047

4095

262143

II. EFFECTIVENESS OF BASE4 OPERATION FOR FIXED DISTANCE CODES

0 0

1 1.59

0 0
33 0.81

469 0.18

30

36

Table A-1 2. Distance 3 codes -
a

55

75

49

69

47

87

77

71

95

Count of possible
erasure numbers

1023

1023

2047

2047

4095

16383

32767

262143

262 143

23

20

46

33

90
1 96

42 1

3700

2881

2.25

1.96

2.25

1.61

2.20

1.96

1.28

1.41

1.10

Table A-1 3. Distance 4 codes

n

11

12

22

24

36

a

89

105

267

357

555

Undetectable erasure numbers

27

JPL TECHNICAL REPORT NO. 32-546

111. FACTORIZATION OF 2"- 1 INTO PRIMES

Table A-14 indicates all values of a which satisfy the
condition 2" - 1 = aB. Any prime factor or any product
of prime factors will serve as a for a digitwise comple-

mentable product code with A = 2"-1 (n-bit words).
The source of Table A-14 is Ref. 10.

n

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table A-14. Prime factors of 2"-1

Prime factors

3
7
3 x 5
31
3 X 3 X 7
127
3 x 5 ~ 1 7
7 x 73
3 x 11 x 31
23 x 89
3 x 3 x 5 x 7 x 13
8191
3 x 43 x 127
7 x 31 x 151
3 x 5 x 17 x 257
131071
3 x 3 x 3 x 7 x 19 x 73
524,287
3 x 5 x 5 x 11 x 31 x 41
7 x 7 x 127 x 337
3 x 23 x 89 x 683
47 x 178.481
3 x 3 x 5 x 7 x 13 x 17 x 241
31 x 601 x 1,801
3 x 2731 x 8,191
7 x 73 x 262,657
3 x 5 x 29 x 43 x 113 x 127
233 x 1,103 x 2,089
3 x 3 x 7 x 11 x 31 x 151 x 331
2,147,483,647
3 x 5 x 17 x 257 x 65,537
7 x 23 x 89 x 599,479
3 x 43,691 x 131,071
31 x 71 x 127 x 122,921
3 x 3 x 3 x 5 x 7 x 13 x 19 x 37 x 73 x 109
223 x 616,318,177
3 x 174,763 x 524.287
7 x 79 x 8,191 x 121,369
3 x 5 x 5 x 11 x 17 x 31 x 41 x 61,681
13,367 x 164,511,353
3 x 3 x 7 x 7 x 43 x 127 x 337 x 5,419
431 x 9,719 x 2,099,863
3 x 5 x 23 x 89 x 397 x 683 x 2,113
7 x 31 x 73 x 151 x 631 x 23,311
3 x 47 x 178,481 x 2,796,203
2,351 x 4,513 x 13,264,529
3 x 3 x 5 x 7 x 13 x 17 x 97 x 241 x 257 x 673

JPL TECHNICAL REPORT NO. 32-546

n

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

Table A-1 4. Prime factors of 2"- 1 (Cont'd)

Prime factors

127 x 4,432,676,798,593
3 x 11 x 31 x 251 x 601 x 1.801 x 4,051
7 x 103 x 2,143 x 11,119 x 131,071
3 x 5 x 53 x 157 x 1,613 x 2,731 x 8,191
6,361 x 69,431 x 20,394,401
3 x 3 x 3 x 3 x 7 x 19 x 73 x 87,211 x 262,657
23 x 31 x 89 x 881 x 3,191 x 201,961
3 x 5 x 17 x 29 x 43 x 113 x 127 x 15,790,321
7 x 32,377 x 524,287 x 1,212,847
3 x 59 x 233 x 1.103 x 2,089 x 3,033,169
179,951 x 320,343 x 1,780,337
3 x 3 x 5 x 5 x 7 x 11 x 13 x 31 x 41 x 61 x 151 x 331 x 1,321
2,305,843,009,213,693,951
3 x 715,827,883 x 2,147,483,447
7 x 7 x 73 x 127 x 337 x 92,737 x 649,657
3 x 5 x 17 x 257 x 641 x 65,537 x 6,700,417
31 x 8,191 x 145,295,143,558,111
3 x 3 x 7 x 23 x 67 x 89 x 683 x 20,857 x 599,479
193,707,721 x 761,838,257,287
3 x 5 x 137 x 953 x 26,317 x 43,691 x 131,071
7 x 47 x 178,481 x 10,052,678,938,039
3 x 11 x 31 x 43 x 71 x 127 x 281 x 86,171 x 122,921
228,479 x 48,544,121 x 212,885,833
3 x 3 x 3 x 5 x 7 x 13 x 17 x 19 x 37 x 73 x 109 x 241 x 433 x 38,737
439 x 2,298,041 x 9,361,973,132,609
3 x 223 x 1,777 x 25,781,083 x 616,318,177
7 x 31 x 151 x 601 x 1.801 x 100,801 x 10,567,201
3 x 5 x 229 x 457 x 174,763 x 524.287 x 525,313
23 x 89 x 127 x 581383,643,249,112,959
3 x 3 x 7 x 79 x 2,731 x 8,191 x 121,369 x 22,366,891
2,687 x 202,029,703 x 1,113,491,139,767
3 x 5 x 5 x 11 x 17 x 31 x 41 x 257 x 61,681 x 4,278,255,361
7 x 73 x 2,593 x 71,119 x 262,657 x 97,685,839
3 x 83 x 13,367 x 164,511,353 x 8,831,418,697

3 x 3 x 5 x 7 x 7 x 13 x 29 x 43 x 113 x 127 x 337 x 1,429 x 5,419 x 14,449
31 x 131,071 x 9,520,972,806,333,758,431
3 x 431 x 9,719 x 2,099,863 x 2,932,031,007,403
7 x 233 x 1,107 x 2,089 x 4,177 x 9,857,737,159,463
3 x 5 x 17 x 23 x 89 x 353 x 397 x 683 x 2,113 x 2,931,542,417
61 8,970,019,642,690,137,449,562,111
3 x 3 x 3 x 7 x 11 x 19 x 31 x 73 x 151 x 331 x 631 x 23,311 x 18,837,001
127 x 911 x 8,191 x 112,901,153 x 23,140,471,537
3 x 5 x 47 x 277 x 1,013 x 1,657 x 30,269 x 178,481 x 2,796,203
7 x 2,147,483,647 x 658,812,288,653,553,079
3 x 283 x 2,351 x 4,513 x 13364,529 x 165,768,537,521
31 x 191 x 524,287 x 12,761,021,422,289,693,921
3 x 3 x 5 x 7 x 13 x 17 x 97 x 193 x 241 x 257 x 673 x 65,537 x 22,253,377

3 x 43 x 127 x 4,363,953,127,297 x 4,432,676,798,593
7 x 23 x 73 x 89 x 199 x 153,649 x 599,479 x 33,057,806,959
3 x 5 x 5 x 5 x 11 x 31 x 41 x 101 x 251 x 601 x 1,801 x 4,051 x 8,101 x 268,501

29

